Workshop Physics

Developed by: Priscilla Laws with contributions from Robert Boyle, Patrick Cooney, Kenneth Laws, John Luetzelschwab, David Sokoloff and Ronald Thornton

Level
 
middle schoolhigh schoolintro collegeinter-mediateupper levelgrad school   other


 Intro College Calculus-based
calc based
 Intro College Algebra-based
alg based

Topics
Mechanics  Electricity / Magnetism  Waves / Optics  Thermal / Statistical  Modern / Quantum
Setting
Lecture - Small (<30 students)  Lab  Studio


What? A calculus-based intro physics curriculum designed to completely replace traditional lectures and labs with sequenced activities. Students work in groups to make and discuss predictions and observations, and to perform data acquisition, visualization, analysis, and mathematical modeling.

Why not? Materials are only available for the second semester of intro physics. This is a band-aid on a traditional lecture course structure, which is less ideal than making a more drastic change to your course structure and engaging students in working on longer and more meaningful problems.

Example materials

 

Topic outline

MODULE 1: The Core Volume: Mechanics I: Kinematics and Newtonian Dynamics (Units 1-7)

Unit 1. Introduction and Computing.

Unit 2. Measurement and Uncertainty.

Unit 3. One Dimensional Motion I—A Graphical Description.

Unit 4. One-Dimensional Motion II—A Mathematical Description of Constant Acceleration.

Unit 5. One-Dimensional Forces, Mass, and Motion.

Unit 6. Gravity and Projectile Motion.

Unit 7. Applications of Newton's Laws.

MODULE 2: Mechanics II: Momentum, Energy, Rotational and Harmonic Motion, and Chaos (Units 8 - 15)

Unit 8. One-Dimensional Collisions.

Unit 9. Two-Dimensional Collisions.

Unit 10. Work and Energy.

Unit 11. Energy Conservation.

Unit 12. Rotational Motion.

Unit 13. Rotational Momentum and Torque as Vectors.

Unit 14. Harmonic Motion.

Unit 15. Oscillations, Determinism, and Chaos.

MODULE 3: Heat Temperature and Nuclear Radiation: Thermodynamics, Kinetic Theory, Heat Engines, Nuclear Decay, and Random Monitoring (Units 16 - 18 and 28)

Unit 16. Temperature and Heat Transfer.

Unit 17. The First Law of Thermodynamics.

Unit 18. Heat Engines.

Unit 28. Radioactivity and Radon.

MODULE 4: Electricity and Magnetism (Units 19-27)

Unit 19. Electric Fields.

Unit 20. Electric Flux and Gauss' Law.

Unit 21. Electrical and Gravitational Potential.

Unit 22. Batteries, Bulbs, and Current Flow.

Unit 23. Direct Current Circuits.

Unit 24. Capacitors and RC Circuits.

Unit 25. Electronics.

Unit 26. Magnetic Fields.

Unit 27. Electricity and Magnetism.

 

Student skills developed

Designed for:
  • Conceptual understanding
  • Lab skills
  • Using multiple representations
  • Designing experiments
Can be adapted for:
  • Problem-solving skills
  • Metacognition

Instructor effort required

  • Medium

Resources required

  • TAs / LAs
  • Projector
  • Computers for students
  • Advanced lab equipment
  • Cost for students
  • Tables for group work

Developer's website: Workshop Physics

Workshop Physics is available in a series of books published by Wiley:

  • Module 1: The Core Volume: Mechanics I: Kinematics and Newtonian Dynamics (Units 1-7)
  • Module 2: Mechanics II: Momentum, Energy, Rotational and Harmonic Motion, and Chaos (Units 8 - 15)
  • Module 3: Heat Temperature and Nuclear Radiation: Thermodynamics, Kinetic Theory, Heat Engines, Nuclear Decay, and Random Monitoring (Units 16 - 18 and 28)
  • Module 4: Electricity and Magnetism (Units 19-27)
RESEARCH VALIDATION
Bronze Validation
This is the third highest level of research validation, corresponding to:
  • at least 1 of the "based on" categories
  • at least 1 of the "demonstrated to improve" categories
  • at least 1 of the "studied using" categories
(Categories shown below)

Research Validation Summary

Classes using Workshop Physics have been shown to have high gains on the FMCE, the HTCE, the ECCE, and the MPEX.

Based on Research Into:

  • theories of how students learn
  • student ideas about specific topics

Demonstrated to Improve:

  • conceptual understanding
  • problem-solving skills
  • lab skills
  • beliefs and attitudes
  • attendance
  • retention of students
  • success of underrepresented groups
  • performance in subsequent classes

Studied using:

  • cycle of research and redevelopment
  • student interviews
  • classroom observations
  • analysis of written work
  • research at multiple institutions
  • research by multiple groups
  • peer-reviewed publication

References