Implementation
Guide
SCALE-UP

Developed by: Robert Beichner

Level
 
middle schoolhigh schoolintro collegeinter-mediateupper levelgrad school   other


 Intro College Calculus-based
calc based
 Intro College Algebra-based
alg based
 Intro College Conceptual
conceptual

Topics
Mechanics  Electricity / Magnetism  Waves / Optics  Thermal / Statistical  Modern / Quantum +3
Setting
Studio


What? An integrated learning environment where the space is designed to facilitate interactions between small groups working on short, interesting tasks: Hands-on activities, questions, simulations, or laboratories. There is no separate lab class and most of the "lectures" are class-wide discussions.

Why? It leads to improved learning and retention for students of all levels, genders, and races. It creates lasting change in departments. Restructuring the physical space encourages instructors to rethink their teaching. Once they start using SCALE-UP they are unlikely to go back to traditional methods.

Why not? SCALE-UP requires an overhaul of the physical classroom space and the way classes are scheduled. It is difficult for a single instructor to implement SCALE-UP without support from a strong team in their department and institution. Physical infrastructure and instructor training can be expensive.


Student skills developed

Designed for:
  • Conceptual understanding
  • Problem-solving skills
  • Lab skills
  • Making real-world connections
  • Using multiple representations
  • Designing experiments
  • Metacognition

Instructor effort required

  • High

Resources required

  • Tables for group work
  • Studio classroom

SCALE-UP Implementation Guide

Everything you need to know about implementing SCALE-UP in your class.

Developer's website: SCALE-UP
Intro Article: R. Beichner, The Student-Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) Project, in Research-Based Reform of University Physics, edited by E. Redish and P. Cooney, (American Association of Physics Teachers, College Park, 2007), Vol. 1.
External Resources

Types of SCALE-UP activities with examples:

  • Class outline: Because lab/lecture/tutorial sections are integrated, SCALE-UP class periods are typically long (~ 2 hrs), and filled with many short activities. To help students keep track of where they are in the class, the SCALE-UP developers recommend presenting an overview of each day's class on a web page that fits on a single computer screen and can be reviewed later. Example class outline
  • Tangibles: These are short activities involving physical experiments using a predict-observe-explain model. Example tangibles
  • Ponderables: These are short activities involving conceptual questions that students discuss and answer. Example ponderables
  • WebAssign activities: You can use WebAssign or another content management system to assign problems in class that help reinforce concepts introduced in tangibles and ponderables, and helps you quickly assess whether students are understanding the concepts. These are typically short assignments that ask questions directly related to a tangible or ponderable activity the students just did. You can keep students from completing assignments before class by putting a password on the assignment that you give them in class. Example ponderable with follow-up WebAssign activity (unit vectors)
  • Labs: In addition to short tangible experiments, students in SCALE-UP classes can also do longer experimental lab work that requires a formal report. Labs allow a focus not just on conceptual understanding but also on hypothesis generation, student design of data collection, and uncertainty considerations.  Example labs: capacitors and impulse
  • Real World Problems: Problems like the University of Minnesota context-rich problems or the University of Maryland thinking problems are good ways to "give students challenging, realistic situations that are best analyzed by working in groups and following a problem-solving protocol" Example real world problems 
  • 3-way activities: Each group at a table does a different type of activity on the same topic (useful for saving money/space on equipment - you only need one set of equipment for every 9 students, and while some students use equipment that takes up a lot of table space, other students can work on a laptop). Example 3-way activity (fancart)
  • Homework: Homework in SCALE-UP should be used to cover the basics that you would normally address in a lecture so that students are fully prepared to participate in group work during class. This can be achieved through assigning reading with reading quizzes and a few straightforward problems before the class on a topic. Homework can also be used to assign more challenging follow-up problems after class. You can reduce grading through online homework systems and/or a "homework lottery" where you roll a die to decide which table's homework you will grade.

Members-only SCALE-UP site:

Contact Robert Beichner for more information or to become a member. He will need to verify that you are a legitimate faculty member, so be sure to include a web link or other means of verification in your e-mail.

You can download teaching materials for SCALE-UP classes from NC State from the members-only SCALE-UP site, including:

  • Intro mechanics with Matter and Interactions
  • Intro E&M with Matter and Interactions
  • Modern Physics
  • Intro mechanics with traditional content coverage
  • Intro E&M with traditional content coverage

Other sources of SCALE-UP teaching materials:

Find more example SCALE-UP activities in the following journal articles:

Find many more research-based activities that you can use in SCALE-UP classrooms in our Expert Recommendation on finding activities for small group discussions.

 

RESEARCH VALIDATION
Silver Validation
This is the second highest level of research validation, corresponding to:
  • at least 1 of the "based on" categories
  • at least 2 of the "demonstrated to improve" categories
  • at least 4 of the "studied using" categories
(Categories shown below)

Research Validation Summary

Based on Research Into:

  • theories of how students learn
  • student ideas about specific topics

Demonstrated to Improve:

  • conceptual understanding
  • problem-solving skills
  • lab skills
  • beliefs and attitudes
  • attendance
  • retention of students
  • success of underrepresented groups
  • performance in subsequent classes

Studied using:

  • cycle of research and redevelopment
  • student interviews
  • classroom observations
  • analysis of written work
  • research at multiple institutions
  • research by multiple groups
  • peer-reviewed publication

References

Compatible Methods

Peer Instruction PhET Interactive Simulations Tutorials in Introductory Physics +51 more...

PhysPort Data Explorer

Screenshot of the Data Explorer
Explore assessment data